高三网 试题库作文库大学库专业库

当前位置: 高三网 >高中数学知识点> 正文

高中数学不等式与不等式组的解法

2016-12-06文/叶丹

  高中数学不等式主要问题包括:大小比较(方法有作差法,作商法,图象法,函数性质法);证明题(比较法,反证法,换元法,综合法…);恒成立问题(判别式法,分离参数法…)等,下面是高中数学不等式与不等式组的解法,供参考。

不等式与不等式组的解法

高考数学选择题蒙题技巧有哪些 高考数学答题技巧及时间分配
高中数学应用题解题技巧 史上最牛的高考数学蒙题技巧
高考数学考场蒙题技巧 名师分享高考数学答题技巧

1不等式与不等式组的数轴穿根解法

  数轴穿根:用根轴发解高次不等式时,就是先把不等式一端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x轴的右端上方起,一次穿过这些零点,这大于零的不等式地接对应这曲线在x轴上放部分的实数x得起值集合,小于零的这相反。

  做法:

  1.把所有X前的系数都变成正的(不用是1,但是得是正的);

  2.画数轴,在数轴上从小到大依次标出所有根;

  3.从右上角开始,一上一下依次穿过不等式的根,奇过偶不过(即遇到含X的项是奇次幂就穿过,偶次幂跨过,后面有详细介绍);

  4.注意看看题中不等号有没有等号,没有的话还要注意写结果时舍去使使不等式为0的根。

  例如不等式:x2-3x+2≤0(最高次项系数一定要为正,不为正要化成正的)

  ⒈分解因式:(x-1)(x-2)≤0;

  ⒉找方程(x-1)(x-2)=0的根:x=1或x=2;

  ⒊画数轴,并把根所在的点标上去;

  ⒋注意了,这时候从最右边开始,从2的右上方引出一条曲线,经过点2,继续向左画,类似于抛物线,再经过点1,向点1的左上方无限延伸;

  ⒌看题求解,题中要求求≤0的解,那么只需要在数轴上看看哪一段在数轴及数轴以下即可,观察可以得到:1≤x≤2。

  高次不等式也一样.比方说一个分解因式之后的不等式:

  x(x+2)(x-1)(x-3)>0

  一样先找方程x(x+2)(x-1)(x-3)=0的根

  x=0,x=1,x=-2,x=3

  在数轴上依次标出这些点.还是从最右边的一点3的右上方引出一条曲线,经过点3,在1、3之间类似于一个开口向上的抛物线,经过点1;继续向点1的左上方延伸,这条曲线在点0、1之间类似于一条开口向下的曲线,经过点0;继续向0的左下方延伸,在0、-2之间类似于一条开口向上的抛物线,经过点-2;继续向点-2的左上方无限延伸。

  方程中要求的是>0,

  只需要观察曲线在数轴上方的部分所取的x的范围就行了。

  x3。

  ⑴遇到根是分数或无理数和遇到整数时的处理方法是一样的,都是在数轴上把这个根的位置标出来;

  ⑵“奇过偶不过”中的“奇、偶”指的是分解因式后,某个因数的指数是奇数或者偶数;

  比如对于不等式(X-2)2(X-3)>0

  (X-2)的指数是2,是偶数,所以在数轴上画曲线时就不穿过2这个点,

  而(X-3)的指数是1,是奇数,所以在数轴上画曲线时就要穿过3这个点。

1高中数学不等式与不等式组的解法

  1.一元一次不等式的解法

  任何一个一元一次不等式经过变形后都可以化为ax>b或axb而言,当a>0时,其解集为(ab,+∞),当a<0时,其解集为(-∞,ba),当a=0时,b<0时,期解集为R,当a=0,b≥0时,其解集为空集。

  例1:解关于x的不等式ax-2>b+2x

  解:原不等式化为(a-2)x>b+2

  ①当a>2时,其解集为(b+2a-2,+∞)

  ②当a<2时,其解集为(-∞,b+2a-2)

  ③当a=2,b≥-2时,其解集为φ

  ④当a=2且b

  2.一元二次不等式的解法

  任何一个一元二次不等式都可化为ax2+bx+c>0或ax2+bx+c<0(a>0)的形式,然后用判别式法来判断解集的各种情形(空集,全体实数,部分实数),如果是空集或实数集,那么不等式已经解出,如果是部分实数,则根据“大于号取两根之外,小于号取两根中间”分别写出解集就可以了。

  例2:解不等式ax2+4x+4>0(a>0)

  解:△=16-16a

  ①当a>1时,△<0,其解集为R

  ②当a=1时,△=0,则x≠-2,故其解集(-∞,-2)∪(-2,+∞)

  ③当a<1时,△>0,其解集(-∞,-2-21-aa)∪(-2+21-aa,+∞)

  3.不等式组的解法

  将不等式中每个不等式求得解集,然后求交集即可.

  例3:解不等式组m2+4m-5>0(1)

  m 2+4m-12<0(2)

  解:由①得m1

  由②得-6,故原不等式组的解集为(-6,-5)∪(1,2)

  4.分式不等式的解法

  任何一个分式不等都可化为f(x)g(x)>0(≥0)或f(x)g(x)<0(≤0)的形式,然后讨论分子分母的符号,得两个不等式组,求得这两个不等式组的解集的并集便是原不等式的解集.

  例4:解不等式x2-x-6-x2-1>2

  解:原不等式化为:3x2-x-4-x2-1>0

  它等价于(I)3x2-x-4>0-x2-1>0和(II)3x2-x-4<0-x2-1<0

  解(I)得解集空集,解(II)得解集(-1,43).

  故原不等式的解集为(-1,43).

  5.含有绝对值不等式的解法

  去绝对值号的主要依据是:根据绝对值的定义或性质,先将含有绝对值的不等式中的绝对值号去掉,化为不含绝对值的不等式,然后求出其解集即可。

  (1)|x|>a(a>0)x>a或x

  (2)|x|0)-a解:原不等式等价于3xx2-4≥1,①或3xx2-4≤-1②

  解①得2 解②得-4≤x

  故原不等式的解集为[-4,-2)∪(-2,-1]∪[1,2)∪(2,4].

  例6:解不等式|x2-3x+2|>x2-1

  解:原不等式等价于x2-3x+2>x2-1①或x2-3x+2

  解①得{x|x<1},解②得{x|12g(x)和|f(x)|a和|x| 例7:解不等式|x+1|+|x|<2

  解:①当x≤-1时,原不等式变为-x-1-x<2 ∴-32 ②当-1 ∴-1 ③当x>0时,原不等式变为x+1+x<2.

  ∴解得0 综合①,②,③知,原不等式的解集为{x|-32 例8:解不等式|x2-3x+2|+|x2-4x+3|>2

  解:①当x≤1时,原不等式变为x2-3x+2+x2-4x+3>2,此时解集为{x|x<12}.

  ②当12,此时解集为空集。

  ③当22,此时的解集是空集。

  ④当x>3时,原不等式化为x2-3x+2+x2-4x+3>2,此时的解集为{x|x>3}.

  综合①②③④可知原不等式的解集为{x|x≤12}∪{x|x>3}.从以上两个例子可以看出,解含有两个或两个以上的绝对值的不等式,一般是先找出一些关键数(如例7的关键数是-1,0;例8中的关键数是1,2,3)这些关键数将实数划分为几个区间,在这些区间上,可以根据绝对值的意义去掉绝对值号,从而转化为不含绝对值的不等式,应当注意的是,在解这些不等式时,应该求出交集,最后综合各区间的解集写出答案。

  6.无理不等式的解法

  无理不等式f(x)>g(x)的解集为不等式组(I)f(x)≥[g(x)] 2f(x)≥0g(x)≥0和(II)f(x)≥0g(x)<0的解集的并集.

  无理不等式f(x)0)的解集为不等式组f(x)≥0f(x)0的解集.

  例9:解不等式:2x+5-x-1>0

  解:原不等式化为:2x+5>x+1 由此得不等式组(I)2x+5≥0x+1<0或(II)2x+5≥0x+1≥02x+5>(x+1)2

  解(I)得-52≤x

  故原不等式的解集为[-52,2].

  7.指数不等式的解法

  根据指数函数的单调性来解不等式。

  例10.解不等式:9x>(3)x+2

  解:原不等式化为 3 2x>3x+22

  ∴2x>x+22即x>23

  故原不等式解集为(23 ,+∞).

  8.对数不等式的解法

  根据对数函数的单调性来解不等式。

  例11:解不等式:log12(x+1)(2-x)>0

  解:原不等式化为log12(x+1)(2-x)>log121

  ∴ (x+1)(2-x)>0 (1)(x+1)(2-x)<1 (2)

  解①得-1 解②得x<1-52 或x>1+52

  故原不等式解集(-1,1-52)∪(1+52,2).

  9.简单高次不等式的解法

  简单高次不等式可以利用数轴标根法来解不等式.

  例12:解不等式(x+1)(x 2-5x+4)<0

  解:原不等式化为:(x+1)(x-1)(x-4)<0

  如图,由数轴标根法可得原不等式解集为(-∞,-1)∪(1,4)

  10.三角不等式的解法

  根据三角函数的单调性,先求出在同一周期内的解集,然后写出通值。

  例13:解不等式:sinx≤-12

  解:sinx≤-12在[0,2π]内的解是:76 π≤x≤116π

  故原不等式的解集为[2kπ+76 ,2kπ+116 ](k∈z)。

  11.含有字母系数不等式的解法

  在解不等式过程中,还常常遇到含有字母系数的一些不等式,此时,一定要注意字母系数进行讨论,以保证解题的完备性。

  例14:解不等式2 3x-2x 解:原不等式变形为2 2x(2 2x-1) ∴(2 2x-1) (2 2x-a)<0

  ∴原不等式等价于2 2x-1>02 2x-a<0 或2 2x-1<02 2x-a>0

  ①当a≤0时,x<0;

  ②当0 ③当a=1时,无解

  ④当a>1时,0 解不等式的基础是解一元一次不等式,解一元二次不等式,解由一元一次不等式和一元二次不等式组成的不等式组。解其它各式各样的不等式(三角不等式除外)关键在于根据有关的定义,定理,性质转化这些不等式为上述三类不等式。在具体转化的过程中,特别应该注意每一步都应是同解变形。像无理不等式中的开偶次方时的被开方数及对数不等式中的真数等,在去根号和去对数符号时,一定要使被开方数非负,真数大于零。

  以上是高中数学不等式与不等式组的解法的全部内容,供参考。不等式的解法所使用的数学方法较多,各种方法互相渗透,使解题更加灵活,多变,巧妙。要根据具体题目,选择正确方法,就可达到迎刃而解的目的。

高三网小编推荐你继续浏览:如何快速提高高中数学成绩?高中数学诱导公式总结最有效的高中数学提分方法高中数学空间几何体公式总结高中数学知识点总结:平面向量的线性运算高中数学立体几何易错知识点总结

推荐阅读

点击查看高中数学知识点更多内容